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a b s t r a c t

The continuous spectrum of analytical toroidally rotating magnetically confined plasma
equilibria is investigated analytically and numerically. In the presence of purely toroidal
flow, the ideal magnetohydrodynamic equations leave the freedom to specify which ther-
modynamic quantity is constant on the magnetic surfaces. Introducing a general parame-
trization of this quantity, analytical equilibrium solutions are derived that still posses this
freedom. These equilibria and their spectral properties are shown to be ideally suited for
testing numerical equilibrium and stability codes including toroidal rotation. Analytical
expressions are derived for the low-frequency continuous Alfvén spectrum. These expres-
sions still allow one to choose which quantity is constant on the magnetic surfaces of the
equilibrium, thereby generalizing previous results. The centrifugal convective effect is
shown to modify the lowest Alfvén continuum branch to a buoyancy frequency, or
Brunt–Väisälä frequency. A comparison with numerical results for the case that the specific
entropy, the temperature, or the density is constant on the magnetic surfaces yields excel-
lent agreement, showing the usefulness of the derived expressions for the validation of
numerical codes.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

One of the very few viable ways to confine a plasma at the high temperatures required for nuclear fusion, is using mag-
netic fields. One of the most promising designs suitable for the commercial production of energy is the tokamak, in which the
plasma is confined in the shape of a torus. A tokamak force equilibrium can be described quite well by a balance between the
pressure gradient, the Lorentz force, and centrifugal forces. This force balance can be described by the fluid model of mag-
netohydrodynamics (MHD). Assuming axisymmetry, the static MHD equations can be reduced to a single partial differential
equation, called the Grad–Shafranov equation [1,2]. The solution w is a stream function for the poloidal magnetic field, and
can be used as a coordinate that labels the magnetic surfaces.

Given the dependence of the pressure and the toroidal magnetic field on w, the solution of the Grad–Shafranov equation
gives w as a function of the spatial coordinates, completing the description of the equilibrium. Assuming this dependence to
be linear, a simple polynomial solution was obtained by Solov’ev [3]. Incidentally, this solution is identical to Hill’s solution for
the Stokes stream function of a spherical vortex [4], which long preceded the conception of the idea of a tokamak in the 1950’s.
Solutions expressed in special mathematical functions were also found for a quadratic dependence [5–7] and a mixed linear
and quadratic dependence [8–11]. The most general linear solution is obtained in Refs. [12,13]. More exotic dependencies
yielding analytical solutions are considered in Refs. [14,15]. Convenient homogeneous solutions are provided in Refs. [16,17].
. All rights reserved.
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In the presence of toroidal rotation, one additionally has to specify how the angular rotation frequency depends on w.
Assuming that the ratio between the angular frequency squared and the static temperature is constant and that the magnetic
surfaces have constant temperature or entropy, analytical solutions were found for a linear [18] or a mixed linear and qua-
dratic dependence [19] of the pressure and the toroidal magnetic field on w. For isothermal magnetic surfaces, solutions for a
quadratic or mixed dependence were already obtained in Refs. [20,21], or in spherical coordinates in Ref. [22]. For more gen-
eral flows, solutions have been found assuming plasma incompressibility, see e.g. Refs. [23,24].

All existing analytical equilibrium solutions including toroidal flow, make an assumption on which quantity is constant
on the magnetic surfaces. In the present work, we assume a general parametrization of this quantity from the outset. The
freedom of this choice is retained in the equilibrium equation and the subsequently derived class of analytical solutions.
These analytical solutions are generalizations of those of Ref. [18] and without rotation reduce to the polynomial Solov’ev
solution [3]. For numerical stability calculations, an accurate numerical representation of the equilibrium is required. In or-
der to test the accuracy of the equilibrium solver, the Solov’ev solution is frequently used [25–29].

Various equilibrium codes that include toroidal rotation exist. Most of these codes assume isothermal magnetic surfaces
[30–36] while some assume flux surfaces of constant density [37,38]. The equilibrium code FINESSE [39] allows in case of
purely toroidal flow the freedom to choose either the temperature, the density, or the entropy to be constant within the mag-
netic surfaces [40]. Only rarely, analytical solutions have been used to test an equilibrium code including toroidal flow [35].
In the present work we will use the derived analytical solutions, to test the convergence behavior of FINESSE.

The Solov’ev equilibrium solution [3] is also frequently used for stability calculations as a standardized reference equilib-
rium [27,28,41–43]. For stability calculations including toroidal flow, less well-defined reference test cases are generally
used to benchmark numerical codes. Again, the derived analytical solutions would be ideally suited to serve as a standard-
ized reference equilibrium including rotation.

Also in the analytical stability calculations in this work, the freedom to specify which quantity is constant on the magnetic
surfaces of the equilibrium is retained. An analytical expression is derived for the low-frequency continuous Alfvén spectrum
of a large aspect ratio tokamak plasma, including the effects of compressibility and toroidal rotation. This expression still
allows for the choice of which quantity is constant on the magnetic surfaces of the equilibrium, and as such generalizes
the results of Refs. [44–47] for isothermal flux surfaces and the recent result of Ref. [48] for magnetic surfaces of constant
density.

The lowest-frequency branch of the derived expression is shown to be equal to the Brunt–Väisälä-frequency associated
with the centrifugal convective effect. For a tokamak plasma with magnetic surfaces of constant density, the convective
instability destabilizes the continuous spectrum. Simulations show how instability spreads from a localized part of the
tokamak to almost the entire plasma for sonic rotational velocities. For a tokamak with isothermal magnetic surfaces,
rotation induces a gap in the continuous spectrum. Good correspondence between the continuum frequencies from
numerical simulations and the derived analytical expression is obtained, showing its usefulness for the validation of sta-
bility codes.

2. Magnetohydrodynamic equilibria

In this section we will introduce the considered geometry and basic equations that are used in the analysis of the sub-
sequent sections. Although this work pertains to toroidal rotation, in order to provide some context and introduce concepts
that will arise in the stability analyses, Section 2.3 is devoted to more general equilibrium flows.

2.1. Equations

We start from the ideal magnetohydrodynamic (MHD) equations. These consist of the conservation equations for
momentum, mass, and energy
q
@u
@t
þ qu � ruþrp� J� B ¼ 0; ð1aÞ

@q
@t
þr � ðquÞ ¼ 0; ð1bÞ

@S
@t
þ u � rS ¼ 0; ð1cÞ
together with the reduced Maxwell equations
r� E ¼ �@B=@t; ð1dÞ

r � B ¼ J; ð1eÞ

r � B ¼ 0 ð1fÞ
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and Ohm’s law for ideally conducting moving media
Fig. 1.
used co
commo
at R = R
E ¼ �u� B; ð1gÞ
for the velocity u, magnetic field B, current density J, pressure p, density q. The quantity S � p q�c, with c the adiabatic con-
stant, is related to the specific entropy. The electric field E is actually an auxiliary quantity that can be left out of the formu-
lation by replacing Eqs. (1d) and (1g) by r� (u � B) = @B/@t. In ideal MHD the same holds for J, which can be left out of the
formulation by inserting Eq. (1e) for J into Eq. (1a) to give
q
@u
@t
þ qu � ruþrp� ðr � BÞ � B ¼ 0; ð2aÞ

@q
@t
þr � ðquÞ ¼ 0; ð2bÞ

@S
@t
þ u � rS ¼ 0; ð2cÞ

@B
@t
�r� ðu� BÞ ¼ 0; ð2dÞ

r � B ¼ 0: ð2eÞ

The stationary ideal MHD equations then follow using @/@t = 0. Note that the vacuum magnetic permeability l0 does not ap-
pear explicitly, because it can be scaled out of the equations by a proper dimensionalization of the physical variables. The
energy Eq. (2c) is often referred to as the adiabatic equation of state, since it states that the quantity S � pq�c, which is mono-
tonic function of the specific entropy, is constant along the flow.

2.2. Toroidal flow

2.2.1. Extended Grad–Shafranov equation
In the following we will use the coordinate system (R,Z,/) shown in Fig. 1, commonly used for toroidal problems. This

coordinate system differs from the usual cylindrical coordinate system in the direction of /. We will assume axisymmetry
around the Z-axis, making the toroidal angle / an ignorable coordinate. A hat will be used to denote a unit vector. When the
flow is purely toroidal u ¼ RX/̂, the non-linear term in Eq. (2a) represents the centrifugal force density
�qu � ru ¼ qX2R; ð3Þ
where R = RrR. For purely toroidal flow, i.e. without flow in the poloidal plane, the stationary versions of the continuity Eq.
(2b) and energy Eq. (2c) are trivially satisfied due to axisymmetry. In order to further reduce the resulting equations, we split
the magnetic field in a toroidal and poloidal part as follows:
B ¼ r/�rwþ Fr/; ð4aÞ

J ¼ rF �r/þ D�wr/; ð4bÞ
R
0

Z

R

ψ

a

Ea

a

φ

A schematic overview of the tokamak geometry including the major radius R0 and minor radius a = �R0, giving an inverse aspect ratio � � a/R0. In the
ordinate system (R,Z,/), the direction of / differs from that of the cylindrical coordinate system (R,/,Z). Note that the ellipticity E differs from the
nly used definition. Also note that the magnetic axis, where the poloidal magnetic flux function w has a minimum, differs from the geometrical axis
0 by the Shafranov shift.
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where r/ ¼ /̂=R. Here w and F � RB/ are stream functions of the poloidal part of B and J respectively. Because B � rw = 0,
the magnetic field lies within surfaces of constant w, which can therefore be used to label the magnetic surfaces as indicated
in Fig. 1. The quantity w can be seen to be proportional to the poloidal magnetic flux, by integrating Eq. (4a) over an
axisymmetric strip S of width Dw. Using r/ �rw = �r � (wr/) and Green’s theorem we obtain for the poloidal magnetic
flux
 Z

S
B � dS ¼

Z
S
r/�rw � dS ¼ �

I
@S

wr/ � dl ¼ 2pDw: ð5Þ
The toroidal current J/ = D⁄w/R in Eq. (4b) is expressed in terms of the elliptic operator defined by
D�w � R2r � ðR�2rwÞ ¼ R
@

@R
1
R
@w
@R

� �
þ @

2w

@Z2 ; ð6Þ
to ensure that Ampere’s law, Eq. (1e), is satisfied. Using againr/ �rw = �r � (wr/) and axisymmetry, Eq. (4a) for B man-
ifestly satisfies Eq. (2e), r � B = 0. Eq. (1g), together with Eq. (4a), yields
E ¼ Xrw; ð7Þ
so thatr� E = 0 is automatically satisfied when X is a function of w only. Quantities like X that depend only on the poloidal
flux w are often called flux functions, or surface functions.

Within the above formulation, the only equilibrium equation that is not yet automatically satisfied is the momentum
equation. A toroidal projection of Eq. (2a) with @/@t = 0 leads to the observation that the Lorentz force J � B has no toroidal
component. Inserting the expressions of Eqs. (4a) and (4b) yields (J � B)/ =rw � (rF �r/) = 0, so that F = F(w) is a flux func-
tion. A second projection of the momentum equation, parallel to the poloidal magnetic field, yields
@p
@R

����
w

¼ qRX2; ð8Þ
showing that, within the magnetic surfaces of constant w, the centrifugal force will be balanced exclusively by pressure gra-
dients. A final projection of Eq. (2a) in the direction of rw gives the extended Grad–Shafranov equation [18]
D�w ¼ �
d 1

2 F2

dw
� R2@p

@w

����
R

; ð9Þ
which is the final equation for ideal axisymmetric equilibria with purely toroidal flow. Provided expressions for F and p are
given, this elliptic Eq. (9) can be solved either numerically or analytically for w. The difference between Eq. (9) and the or-
dinary Grad–Shafranov equation for static equilibria is that the last term contains a partial derivative, because the pressure
has to satisfy the additional Eq. (8). For static equilibria, the momentum equation rp = J � B ensures B � rp = 0 so that
p = p(w).

2.2.2. Solving for the pressure analytically
In order to solve Eq. (9) one needs an expression for the pressure, satisfying Eq. (8). We will introduce the following gen-

eral parametrization that satisfies this equation
p ¼ psðwÞð1þ R2KðwÞ=fðwÞÞfðwÞ; ð10Þ

q ¼ qsðwÞð1þ R2KðwÞ=fðwÞÞfðwÞ�1
; ð11Þ
where K(w) � qsX
2/2ps, f(w) is an arbitrary non-zero flux function, and the subscripts s denote static quantities.

One has the freedom of specifying an arbitrary equation of state, for which we choose the ideal gas law
p ¼ qT; ð12Þ
where a constant of proportionality is absorbed in the definition of the temperature T. The temperature can now be written
as
T ¼ TsðwÞð1þ R2KðwÞ=fðwÞÞ; ð13Þ
where Ts(w) = ps/qs, so that K(w) = X2/2 Ts.
Note from Eqs. (10) and (11) that, with cf � f/(f � 1), the following quantity is a flux function
AðwÞ � pq�cf ¼ psq
�cf
s : ð14Þ
For different f, or equivalently different cf, various physical variables can be assumed to be constant on the magnetic sur-
faces. In particular
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AðwÞ ¼
qðwÞ for f! 1 ðcf !1Þ;
TðwÞ for f!1 ðcf ! 1Þ;
SðwÞ for f ¼ c=ðc� 1Þ ðcf ¼ cÞ;

8><>: ð15Þ
In the case of purely toroidal flow we thus find that in addition to ps(w), F(w), and X(w), there is a fourth flux function A(w),
or alternatively f(w) or cf(w), that directly influences the equilibrium solution w(R,Z). Note that in the limit f ?1, the factor
(1 + R2K(w)/f)f becomes expKR2. Eq. (10) for the pressure can now be inserted into the extended Grad–Shafranov Eq. (9)
which can then be solved separately.

2.3. General equilibrium flow

Even though this paper deals with toroidal equilibrium flow, selected aspects associated with poloidal flow are consid-
ered in this section. For general equilibrium flows one has to solve an algebraic (Bernoulli) equation for the density and a
generalized Grad–Shafranov equation simultaneously [49]. Here, we will only discuss the effect of poloidal flow on the free-
dom to choose f(w) arbitrarily. In section 2.3.2 we consider an aspect of motion along the magnetic field lines that will play a
role in later sections.

2.3.1. Poloidal flow
From Eq. (2d) it follows with @/@t = 0 that u � rw = 0, implying that equilibrium plasma flow will always be within the

magnetic surfaces only [50,49]. Apart from the toroidal rotation considered in this paper, plasma can also rotate poloidally.
The stationary versions of Eqs. (2d) and (2b) are still satisfied when a flow U(w)B/q is added to u so that
u ¼ UðwÞ
q

Bþ RXðwÞ/̂: ð16Þ
Note that for non-zero U, Eq. (2c) requires that B � rS = 0 so that the entropy is a flux function. This implies that cf in Eq. (14)
can no longer be chosen arbitrarily, but assumes the value cf = c.

When heat conduction parallel to the field lines is faster than the plasma rotates poloidally, parallel heat exchange may
ensure temperature equilibration of the magnetic surfaces. For small poloidal flow velocities, the stationary adiabatic energy
equation u � rS may therefore be replaced by an isothermal equation u � rT. For the description of faster phenomena like
waves and instabilities, the adiabatic equation is often more appropriate. We note that the use of these two different energy
equations is equivalent to using the same energy equation, with different adiabatic constants. This is nicely facilitated by the
introduction of the ‘adiabatic constant’ cf of the equilibrium, separate from the adiabatic constant c.

Whether the flux surfaces in a tokamak will tend to be isentropic so that cf = c, isothermal so that cf ? 1, or something
else, will therefore depend on the strength of the mechanism that drives poloidal rotation compared to the magnitude of the
parallel heat conductivity. It has even been argued [51] that an assumption of incompressible equilibrium flow may be jus-
tified for tokamak experiments. Incompressibility entails that r � u = 0 so that q is constant on magnetic surfaces and
cf ?1. The most appropriate value for cf may depend on the specific situation under consideration and cf may even assume
different values on different magnetic surfaces. Not unlike the way ps(w) and F(w) can be chosen to model experimentally
measured profiles, cf(w) can be specified according to experimental observations and modelling outside MHD.

2.3.2. Pfirsch–Schlüter factor
The amount of equilibrium flow parallel to the field lines is given by Eq. (16) as uk � B � u=B ¼ UB=qþ RXB/=B, which is

not a flux function. For a tokamak with a large aspect ratio and circular flux surfaces, using Shafranov-shifted polar coordi-
nates (r,h), the flux-surface-average amount of parallel flow is related to the poloidal flow uh and toroidal flow u/ by [52]
hBuki ¼ hBhuhið1þ 2q2Þ þ hB/u/i: ð17Þ
where q = rB//RBh is the safety factor, introduced in section 3.3.4. An assumption used in the derivation of Eq. (17) is that
U(w)/q is a flux function, which only holds for low flow velocities for which q = qs(w).

From Eq. (17) we see that the poloidal flow velocity uh comes with an unexpected additional factor 1 + 2q2, called the
Pfirsch–Schlüter inertial enhancement factor. This can be understood from Eq. (16) by noticing that for plasma to flow in
the poloidal direction, it has to move along the magnetic field and then move back toroidally to return to its original poloidal
plane. This excursion creates an additional effective inertia for motion in the poloidal direction.

3. Analytical equilibria with toroidal flow

The extended Grad–Shafranov equation introduced in the previous section will be solved analytically under simplifying
assumptions. To increase the versatility of the thus obtained analytical solutions, various homogeneous solutions that may
be added are discussed. Expressions for equilibrium properties like the Mach number, plasma beta, and the safety factor are
subsequently derived, allowing control over the characteristics of the solutions. Finally, alternative analytical solutions are
considered.
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3.1. Derivation

Inserting the pressure from Eq. (10) into the extended Grad–Shafranov Eq. (9), we obtain
D�w ¼ �
d 1

2 F2

dw
� R2 @

@w
psðwÞ 1þ R2XðwÞ2

2fðwÞTsðwÞ

 !fðwÞ
24 35: ð18Þ
In order to arrive at an analytical solution, we assume f(w) = f to be constant and
d 1
2 F2

dw
¼ J;

dps

dw
¼ P;

XðwÞ2

2TsðwÞ
¼ K; ð19Þ
with J, P, and K constants. Inserting these assumptions into Eq. (18) gives
R
@

@R
1
R
@w
@R

� �
þ @

2w

@Z2 ¼ �J � R2P 1þ R2K
f

 !f

: ð20Þ
This linear partial differential equation is solved by
w ¼ c0 þ c1R2 þ c2R2 Z2 � R2

4

 !
� JZ2

2
� Pf2

4K2

ð1þ R2K=fÞfþ2 � ð1þ ðfþ 2ÞR2K=fÞ
ðfþ 1Þðfþ 2Þ ; ð21Þ
where the first three terms represent a homogeneous solution and the last two terms form the particular solution. Other
solutions that produce the inhomogeneous term �J in Eq. (20) exist, but �JZ2/2 is the most simple one.

The second term in the numerator of the last term is added to ensure that the solution behaves well in the limit K ? 0.
This term is actually a homogeneous solution that may be added or removed freely because it vanishes under the operation
of D⁄. For K = 0, the last term of Eq. (21) becomes �PR4/8 so that the solution becomes equal to the well-known polynomial
Solov’ev solution [3].

The reader is reminded of the fact that when the plasma flow is purely toroidal, one has the freedom to choose an arbi-
trary non-zero value for f. Using exp(x) � limn?1 (1 + x/n)n, the last term of Eq. (21) becomes in the limit f ?1
� P

4K2 ðe
R2K � ð1þ R2KÞÞ: ð22Þ
The solutions for f ?1 and f = c/(c � 1), i.e. with the temperature and the entropy constant on magnetic surfaces respec-
tively, were previously obtained in Ref. [18].

3.2. Vacuum solutions

The first three terms of the solution given by Eq. (21) satisfy the vacuum equation D⁄wv = 0 so that they may be referred to
as ‘vacuum solutions’. An arbitrary number of vacuum solutions wv can be added to Eq. (21), providing additional control
over the characteristics of the solution. The poloidal magnetic flux associated with these vacuum solutions may be thought
of as originating from external magnetic field coils.

Using separation of variables, D⁄wv = 0 is solved by wv = f(R)g(Z) when D⁄f = k f and D⁄g = �kg. The first of these equations
is Bessel’s equation for f/R while the second is the harmonic equation. A general separable vacuum solution can therefore be
expressed as
wv ¼ R
X

n

cosðknZÞ½anJ1ðknRÞ þ bnY1ðknRÞ�; ð23Þ
with kn, an, bn free constants and J1 and Y1 the first order Bessel functions of the first and second kind, respectively. We choose
to look at up-down symmetric solutions only, which is why in Eq. (23) only cosines were used.

Perhaps more convenient is to use a solution consisting only of polynomials [19]
wv ¼ R2
Xnmax

n¼0

an

Xn

m¼0

ð�1ÞmðR=2Þ2ðn�mÞZ2m

ðn�mÞ!ðn�mþ 1Þ!ð2mÞ! : ð24Þ
The first two terms are the second and third term of Eq. (21). The third term from Eq. (24) is proportional to
R2(R4 � 12R2Z2 + 8Z4). An alternative non-polynomial third vacuum term is given by [16]
wv ¼ c3ðR2 ln R� Z2Þ: ð25Þ
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3.3. Controlling the characteristics of the solution

3.3.1. Shape
The free constants c1, c2 of the solution of Eq. (21) can be used to specify the aspect ratio ��1 � R0/a and the ellipticity E of

the solution shown in Fig. 1. When the vacuum solution of Eq. (25) is added to Eq. (21), the third free constant c3 can be used
to tune the triangularity of the plasma cross-section. To ensure a tokamak configuration, at Z = 0 the outermost flux surface
of the plasma should go through both R = R0 � a and R = R0 + a, i.e. w�(c1,c2) � w(R0 + a,0) � w(R0 � a,0) should vanish. The
value of c1 required to ensure w� = 0 can be obtained from
c1 ¼
�w�ðc1 ¼ 0Þ

w�ðc1 ¼ 1Þ � w�ðc1 ¼ 0Þ : ð26aÞ
To ensure a certain ellipticity E, defined in Fig. 1, one demands that at R = R0 this outermost flux surface additionally goes
through Z = Ea and Z = �Ea. Because the solution of Eq. (21) only contains even powers of Z, it is top-down symmetric so that
when a flux surface goes through one of these points, it automatically goes through the other point. An ellipticity E can there-
fore be assured by requiring that wE(c1,c2) � w(R0,Ea) � w(R0 + a,0) vanishes so that
c2 ¼
�wEðc2 ¼ 0Þ

wEðc2 ¼ 1Þ � wEðc2 ¼ 0Þ : ð26bÞ
For evaluating both (26a) and (26b), the value of the other coefficient c1 or c2 is required. It is therefore necessary to evaluate
these self-consistently, or evaluate one analytically. The other coefficient can then be calculated either analytically as well, or
numerically. Calculating c1 from Eqs. (26a) and (21) gives
c1 ¼
1
2

R2
0 þ a2

� �
c2 þ

P

16aR0K
2 ðf ðaÞ � f ð�aÞÞ � P

4K
f

1þ f
; ð27Þ
where
f ðaÞ ¼ f2

ðfþ 1Þðfþ 2Þ ð1þ ðR0 þ aÞ2K=fÞfþ2
: ð28Þ
In the limit f ?1, this becomes f(a) = exp((R0 + a)2K). Substituting Eq. (27) into Eq. (26b) gives
c2 ¼
1

a2R2
0ð1� ða=2R0Þ2 þ E2Þ

J
ðaEÞ2

2
þ P

4K2

f ðaÞ � f ð�aÞ
2

1þ a
2R0

� �
þ f ð0Þ � f ðaÞ

� �" #
: ð29Þ
With this result inserted into Eq. (27) one has the closed form expressions for c1 and c2 ensuring a closed flux surface through
(R0 ± a,0) and (0,±Ea). To make the expressions dimensionless one may choose either R0 = 1and a = �, or R0 = ��1 and a = 1. To
control the triangularity one can add another vacuum solution proportional to c3, e.g. Eq. (25), and follow the same proce-
dure as outlined above to find c3. Note that this does introduce additional terms in the above expressions for c1 and c2.

3.3.2. The Mach number
The assumptions of Eq. (19) impose restrictions on the kind of equilibria that the analytical solution can describe. The

function F is usually approximately constant for tokamaks, with poloidal currents creating a small ‘diamagnetic dip’ that
can be described quite well with F2 an offset-linear function of w. For a large aspect ratio tokamak plasma, the poloidal flux
function w is an approximately quadratic function of the distance to the magnetic axis, implying that a function linear in w
can describe approximately parabolic profiles. The second assumption of Eq. (19) therefore restricts the pressure profile to be
approximately parabolic, which may be too smooth to describe certain tokamak regimes. The third assumption states that
the angular frequency goes down as the square root of the static temperature Ts. This assumption has an interesting impli-
cation for the Mach number M � RX=

ffiffiffiffiffiffi
cT

p
¼ R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2KTs=cT

p
which, using Eqs. (10) and (11), can be written as
M ¼ R
ffiffiffiffiffiffiffiffiffiffiffiffi
2K=c

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2K=f

q : ð30Þ
Note that the Mach number depends only on R. The denominator of Eq. (30) places a limit on the maximum Mach number
that can be described. In the limit K ?1 we obtain
Mmax ¼
ffiffiffiffiffiffiffiffiffiffi
2f=c

p
: ð31Þ
For isothermal flux surfaces M ¼ R
ffiffiffiffiffiffiffiffiffiffiffiffi
2K=c

p
, so that there is no limit on M.

3.3.3. The plasma beta
A parameter often used to characterize a tokamak plasma is the ratio b � 2p/B2 between the pressure and the magnetic

pressure. With the efficiency of a reactor increasing with increasing p and its cost increasing with increasing B2, b is an
important parameter to roughly judge the performance of a tokamak as a power plant. A high value of b is desirable,
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instabilities limit the currently achievable value to only a few percent. Typically the toroidal vacuum magnetic field B0 at the
geometrical axis and an average pressure hpi are used. Sometimes however an average b is used, defined as
hbi � 2
R

pdVR
B2 dV

; ð32Þ
where the integration is performed over the plasma volume. From Eq. (4a), using partial integration, and finally the extended
Grad–Shafranov Eq. (9),
Z

B2dV ¼
Z

F2 þ jrwj2

R2 dV ¼
Z

F2 � ðw� weÞD
�w

R2 dV ¼
Z
ðw� weÞ

@p
@w
þ 1

R2

d 1
2 F2

dw

 !
þ F2

R2

 !
dV ; ð33Þ
where we denotes the value of w at the edge so that the divergence term
R
r � ðR�2ðw� weÞrwÞdV vanished. When the pres-

sure at the plasma edge vanishes we can use the assumptions (19) to write (w � we)@p/@w = p and ðw� weÞdF2
=dw ¼ F2 � F2

e ,
where Fe denotes the value of F at the plasma edge. By Ampere’s law Eq. (1e), the magnitude of the toroidal vacuum field is
given by B0R0/R so that we have Fe � B/eRe = B0R0 � F0. The average b can then be written as
hbi ¼ 2
R

pdVR
pþ 1

2 R�2 3F2 � F2
0

� �� �
dV

: ð34Þ
The integrals in Eq. (34) have to be calculated numerically in general. When R2
0K� 1, the primary ‘knob’ to tune hbi is the

ratio between the pressure gradient P and 3F2 � F2
0. For higher flow velocities, K plays an important role as well.

3.3.4. The safety factor
Another important parameter to characterize a tokamak equilibrium is the safety factor which, with Bp the poloidal mag-

netic field, is defined by
q � 1
2p

I
B/

RBp
dl ¼ FðwÞ

2p

I
dl

Rjrwj ; ð35Þ
where in the second step we used RBp = jrwj and RB/ = F(w) from Eq. (4a). The integration path of Eq. (35) is along the poloi-
dal magnetic field over one full poloidal turn. With B//Bp the local pitch of the magnetic field line, q gives the number of
toroidal turns per poloidal turn of the magnetic field. Since the magnetic field lines do not cross, q = q(w) is a flux function.

From Eq. (5) we have 2pdw = BpdAt for the infinitesimal poloidal flux through an annulus of area dAt = 2pRdR. The infin-
itesimal toroidal flux through a poloidal cross-section of area dAp =

H
dRdl is similarly given by 2pdv = B/dAp so that
qðwÞ ¼ dv
dw
¼ B/

2p
dAp

dw
: ð36Þ
Taylor expanding w(R,Z) to second order around the magnetic axis, where rw vanishes, yields flux surfaces with elliptical
poloidal cross-sections. The cross-sectional areas satisfy dAp=dw ¼ 2p=

ffiffiffiffi
D
p

with D ¼ detðrrwÞ ¼ wRRwZZ � w2
RZ the discrimi-

nant, the determinant of the Hessian. The safety factor at the magnetic axis is therefore given by
qðwmÞ ¼
B/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

wRRwZZ � w2
RZ

q : ð37Þ
For up-down symmetric equilibria like the analytical equilibria of Eq. (21), wRZ vanishes at the magnetic axis. From Eq. (21),
we have at the magnetic axis wZZ ¼ 2c2R2

m � J and
wRR ¼ 2c1 � 3c2R2
m þ

P
2K

f
fþ 1

1� 1þ R2
mK
f

 !f

1þ R2
mK
f
ð3þ 2fÞ

 !24 35: ð38Þ
Note that the equation dw(R,0)/dR = 0 for the position of the magnetic axis, with w(R,Z) from Eq. (21), cannot be solved ana-
lytically for general f. In the limit f ? 1, however, one finds
R2
m ¼
�P � 2c2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP þ 2c2Þ2 þ 8c1PK

q
PK

: ð39Þ
3.4. Other analytical solutions

Eq. (18) can be solved analytically for other assumptions than those of Eq. (19). When we assume that d 1
2 F2=dw is given by

Kw instead of by J, the extended Grad–Shafranov Eq. (18) becomes
ðD� þ KÞw ¼ �R2Pð1þ R2K=fÞf; ð40Þ
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which has the solution [19]
w ¼ � PR

K3=2

X1
n¼0

f
n

K
fK

� �n

S2nþ2;1

ffiffiffiffi
K
p

R
� �

þ R cosðknZÞ anJ1 R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K � k2

n

q� �
þ bnY1 R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K � k2

n

q� �� 	
; ð41Þ
where an, bn and kn are free constants. The first part of Eq. (41) represents a particular solution in terms of Lommel functions
Sl,m and the second part represents a general homogeneous solution in terms of Bessel functions. This solution has the same
maximum Mach number as the solution of Eq. (21) given in Eq. (31), but has a more peaked toroidal current density. An obvi-
ous drawback for practical applications is the evaluation of an infinite sequence of special functions.

Perhaps a more useful analytical solution is obtained assuming additionally that p0s ¼ Qw instead of P, so that Eq. (18) becomes
ðD� þ K þ Q 2R2ð1þ R2K=fÞfÞw ¼ 0: ð42Þ
which is solved by [19]
w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2K=f

q
cos

ffiffiffiffi
K
p

Z
� �

ðaJ1=ðfþ2ÞðsÞ þ bY1=ðfþ2ÞðsÞÞ; ð43Þ
where s ¼ ð
ffiffiffiffiffiffiffi
2Q
p

=KÞðf=ðfþ 2ÞÞð1þ R2K=fÞðfþ2Þ=2. A property of this solution is that the toroidal current J/ = D⁄w/R is propor-
tional to w. The toroidal current can therefore be made to vanish at the plasma edge, by making w vanish there.

4. The Brunt–Väisälä frequency

The gravitational stability of an adiabatically displaced air parcel in the atmosphere depends on the vertical stratification
of pressure and density. Something similar holds for plasma under the influence of the centrifugal force. By analogy, in Sec-
tion 4.2.2 expressions are derived for the oscillation frequency of plasma confined to the circular magnetic surfaces of a large
aspect ratio tokamak.

4.1. In the atmosphere

Imagine a horizontally stratified atmosphere in which one displaces a fluid parcel a distance z in the vertical ẑ-direction,
from position 1 to position 2. The parcel, arrived at the final position 2, will not have the same thermodynamic variables as
its new environment, so that we will denote these with a subscript f. When the parcel is displaced sufficiently fast there will
be no heat exchange with the environment and the process will be adiabatic, i.e. Sf = S1. The pressure however equilibrates
much faster, so that we can assume pf = p2. Therefore the final density qf = (pf/Sf)1/c = (p2/S1)1/c will differ from the ambient
density q2. With g < 0, this density difference results in a buoyancy force gðqf � q2Þẑ. We can set up the equation of motion
for the vertical position of the fluid parcel
d2z

dt2 ¼ g
qf � q2

qf
¼ g

S�1=c
1 � S�1=c

2

S�1=c
1

	 g
c

1
S

dS
dz

z: ð44Þ
The resulting frequency of the exponential solutions z / expixBVt is called the buoyancy frequency, or Brunt–Väisälä (BV)
frequency
x2
BV � �

g
c

S0

S
¼ g

q0

q
� p0

cp

� �
; ð45Þ
where a prime denotes differentiation with respect to z. When this squared frequency is positive, the buoyancy force is
restoring and the atmosphere is stable. When however
g
q0

q
� p0

cp

� �
< 0; ð46Þ
instability will result. This criterion for convective instability is known as the Schwarzschild criterion.
When the fluid parcel is displaced sufficiently slow for heat exchange with the ambient air to take place, the temperature

will equilibrate as well. In this case there will no longer be a density difference with the environment, no restoring force, and
no oscillations or instability.

When the fluid parcel is displaced without being able to compress, its final density will be qf = q1 so that
x2
BV; incompr: ¼ g

q0

q
: ð47Þ
4.2. In a tokamak

For a tokamak plasma, the issue of gravitational stability discussed above is not very relevant. Centrifugal forces however
can be significant in a tokamak. Like the gravitational force, the centrifugal force is proportional to the density. In Eq. (3), the
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effective gravitational acceleration is given by g = RX2 in the R-direction. Because of the presence of the magnetic field, the
plasma is highly anisotropic. We therefore separately discuss the centrifugal convective effect on plasma perturbations nor-
mal to the magnetic surfaces and within the magnetic surfaces. In both instances, the perturbation needs to have at least a
component in the direction of the centrifugal force.

4.2.1. Normal to the magnetic surfaces
Perturbations perpendicular to the magnetic surfaces are to a good approximation incompressible, in order to minimize

the large energy associated with the compression of magnetic field lines. We consider a plasma perturbation in the horizon-
tal Z = 0 plane. Using g = RX2 in Eq. (47) yields
x2
BV;? ¼

RX2q0

q
: ð48Þ
This frequency squared combines with that associated with the magneto-rotational instability x2
MRI ¼ RðX2Þ0 [53–55] to give

[56]
qx2 ¼ q x2
BV;? þx2

MRI

� �
¼ RðqX2Þ0: ð49Þ
4.2.2. Within the magnetic surfaces
Within the magnetic surfaces, plasma perturbations with a component in the R-direction will also experience the convec-

tive effect. Contrary to the perturbations in the rw-direction, these perturbations can be compressible and will oscillate in
the presence of entropy gradients as described by Eq. (45). The relevant entropy gradients are those within the magnetic
surfaces, projected on the direction of the centrifugal force, i.e.
@S
@R

����
w

¼ @

@R

����
w

psq�c
s 1þ R2K

f

 !f�cðf�1Þ

¼ S 1� c
cf

 !
2RK

1þ R2K=f
; ð50Þ
where we used S = pq�c with p and q from Eqs. (10) and (11) and we used the definition cf(w) � f/(f � 1). Plasma moving
along a magnetic field line has to move in the toroidal as well as the poloidal direction in order to move in the R-direction.
This increases the effective inertia by the Pfirsch–Schlüter factor 1 + 2q2 as described in Section 2.3.2. The BV-frequency is
then decreased by one over this factor. For circular flux-surfaces another factor of 1/2 accounts for the average directional
hðĥ � rRÞ2i ¼ hcos2 hi ¼ 1=2 resulting from the fact that the plasma is restrained to move in the poloidal ĥ-direction while
both the centrifugal force and the entropy gradients are in therR-direction. From Eq. (45), with g = RX2, we can then define
the average BV-frequency of a tokamak with circular flux-surfaces as
x2
BV; tokamak � �

RX2

2ð1þ 2q2Þ
1
cS
@S
@R

����
w

¼
c=cf � 1

1þ R2K=f

R2KX2=c
1þ 2q2 ¼

c
cf

� 1

 !
M2X2

2ð1þ 2q2Þ ; ð51Þ
with M given by Eq. (30). As discussed in Section 2.3.1 the adiabatic constants cf and c may be different, leading to stable
oscillations when cf < c or instability when cf > c.

5. Waves and instabilities

Up to now we have been discussing plasma configurations in which the Lorentz force, the pressure force, and the centrif-
ugal force are balanced. We do not yet know if these configurations are stable against slight deviations from equilibrium. A
small perturbation may create a restoring force, resulting in a wave within the plasma. The resulting force inequilibrium
caused by the perturbation may however also amplify the original perturbation, leading to instability.

First, the Eulerian approach to stability is introduced that is implemented in the numerical code of the next section. Next,
a Lagrangian approach is described and used to obtain an expression for the potential energy of a plasma perturbation. Fi-
nally, an analytical expression for the low-frequency continuous Alfvén spectrum is obtained. Both these expressions contain
the freedom to choose which thermodynamic quantity is constant on the equilibrium magnetic surfaces and in both the BV-
frequency of the previous section plays a role. As a primer, the continuous spectrum in an infinite homogeneous plasma and
a cylinder are briefly revisited.

5.1. Primitive variables

In order to investigate the waves and instabilities in an equilibrium, one can split all quantities in an equilibrium value
plus a perturbation. Inserting these quantities into the time-dependent ideal MHD equations, linear stability is investigated
by retaining only terms that depend on the perturbations to first order. Because the resulting linear equations do not depend
on time explicitly, one can assume normal mode solutions in which the perturbations depend on time harmonically, i.e.
they are proportional to exp(�ixt). The entire system of equations can then be cast into an eigenvalue problem for the
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eigenvalues x. This procedure is typically followed in numerical codes, where the radial and poloidal directions are handled
with finite elements and/or spectral methods. In the case of axisymmetry, the perturbations df of the primitive physical vari-
ables f = p, q, B, u. . . are typically parametrized as
df ðw; #;/; tÞ ¼
X

m

dfmðwÞeiðm#�xt�n/Þ; ð52Þ
where # is some poloidal coordinate and the integers m and n are the poloidal and toroidal mode number, respectively. Be-
cause the equations do not depend on the toroidal coordinate / explicitly, one can investigate single normal modes in the
toroidal direction. The symmetry in the poloidal direction is not exact, so that in general several poloidal mode numbers have
to be included in Eq. (52).

5.2. Plasma perturbation

Another approach is to start from an infinitesimal displacement n of the plasma. This perturbation automatically also per-
turbs other quantities like the magnetic field, the pressure, and the density
dB ¼ r� ðn� BÞ; ð53aÞ

dq ¼ �r � ðqnÞ; ð53bÞ

dp ¼ �n � rp� cpr � n; ð53cÞ
These Eulerian perturbations follow from Eqs. (1d) and (1g), Eq. (1b), and Eqs. (1c) and (12), respectively. Inserting the per-
turbed quantities into the static (i.e. without flow) time-dependent ideal MHD equations gives an equation of motion for n
q€n ¼ FsðnÞ; ð54Þ
where the static force operator is given by [57]
FsðnÞ ¼ ððr � dBÞ � Bþ ðr� BÞ � dB�rdp: ð55Þ
The first two terms can be recognized as the linearised perturbed Lorentz force and the last term as the perturbed pressure
force. Assuming a harmonic time dependence, Eq. (54) becomes an eigenmode equation €n ¼ �x2n for the eigenvalues x2. It
can be shown that Fs is a Hermitian operator so that the eigenvalues x2 are real. This implies that the frequencies x are
either purely real, corresponding to stable waves, or purely imaginary, corresponding to instabilities.

5.3. Frieman–Rotenberg approach

In a formalism developed by Frieman and Rotenberg [58], a Lagrangian approach is taken in which n describes the posi-
tion of the perturbed plasma element relative to the background flow. Assuming n to be of the form (52), the equation of
motion changes from the static Eq. (54) to give [58]
�qxn� 2iqxu � rn ¼ FðnÞ; ð56Þ
where the total force operator F = Fs + Fu, with a rotational force Fu =r � (qnu � ru � quu � rn). The second term in Eq. (56)
can be recognized as resulting from the Coriolis effect.

For a toroidally rotating equilibrium with velocity u ¼ RX/̂ and angular frequency vector X ¼ �XbZ, we obtain after some
work
Fu ¼ �Rr � ðqX2
nÞ þ n2qX2

nþ 2inqXðX� nÞ: ð57Þ
Eq. (56) can then be rewritten in terms of the Doppler shifted frequencies xD = x + nX as [59]
�qx2
Dn� 2iqxDX� n ¼ FsðnÞ � Rr � ðqX2

nÞ: ð58Þ
5.4. Stability

The equation of motion, Eqs. (56) or (58), is no longer a standard eigenvalue equation because the eigenvalue x appears
both linearly and quadratically. This allows the frequencies to become complex-valued. Taking the inner product of Eqs. (56)
or (58) with n⁄ and integrating over the entire plasma volume gives, solving for x [58,60]
x ¼ V 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2 þW

p
; ð59Þ
where V ¼ � 1
2

R
qðnXjnj2 þ in� � ðX� nÞÞd3r is the Doppler–Coriolis shift, W ¼ � 1

2

R
n� � Fd3r the potential energy, and a bar

denotes normalization with I � 1
2

R
qjnj2d3r. The frequencies of Eq. (59) are real when W > �V2, providing a stability criterion

for toroidally rotating tokamak plasmas.
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When the rotation is rigid, or can be considered rigid because the flow shear is insignificant over the area where the mode
amplitude is nonzero, xD is (locally) constant. Taking the inner product of Eq. (58) with n⁄ and integrating over the entire
plasma volume gives
xD ¼ V 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2 þW

p
; ð60Þ
where V ¼ � 1
2

R
iqn� �X� nd3r and W ¼ � 1

2

R
n� � ðFsðnÞ � Rr � ðqX2

nÞÞd3r. The frequencies are real when W > �V2, provid-
ing a necessary and sufficient stability criterion for rigidly rotating tokamak plasmas.

5.5. Potential energy

The potential energy W ¼ � 1
2

R
n� � Fd3r can be rewritten as [61]
W ¼ 1
2

Z
ðjdBj2 þ J � n� � dBþ Un þ UÞd3r; ð61Þ
where the manifestly n-dependent part of the rotational potential energy density is given by
Un ¼ �n� � ðn2qX2
nþ 2inqXX� nÞ ¼ �n2qX2jnj2 � 4inqXX � ReðnÞ � ImðnÞ ð62aÞ
and the remaining non-magnetic part of the potential energy density
U � �ðr � n�Þdpþ n� � Rr � ðqX2
nÞ: ð63Þ
where the divergence r � (n⁄dp) was discarded since, for internal modes, this will give a vanishing surface term when inte-
grated over the entire plasma volume. To investigate the influence of toroidal rotation on stability, we take a closer look at U,
U ¼ ðr � n�Þðn � rpþ cpr � nÞ þ n� � RðqX2r � nþ n � rðqX2ÞÞ: ð64Þ
Writing in components n � r = nw@/@w + nR@/@R + n/@/@/, we have
n � rp ¼ nw
@p
@w
þ nRqRX2; ð65Þ
where the force balance Eq. (8) was used to replace @p/@R by qRX2. To rewrite the last term of Eq. (64), we use
@qX2

@R
¼ f� 1

f
qX2

p
@p
@R
¼ RðqX2Þ2

cfp
; ð66Þ
where we used cf � f/(f � 1) and Eq. (14) for q. Using Eqs. (65) and (66) in Eq. (64) gives
U ¼ ðr � n�Þ nw
@p
@w
þ nRqRX2 þ cpr � n

� �
þ Rn�R qX2r � nþ nw

@qX2

@w
þ nR

RðqX2Þ2

cfp

 !
: ð67Þ
Or, rearranging terms
U ¼ ðr � n�Þnw
@p
@w
þ Rn�Rnw

@qX2

@w
þ cp r � nþ qX2

cp
RnR

�����
�����

2

þ c
cf

� 1

 !
jqX2RnRj2

cp
: ð68Þ
The component of n parallel to the magnetic field is only present in the last two terms. For static equilibria these terms re-
duce to cpjr � nj2. In order to minimize U, the parallel displacement of modes whose phase velocity is smaller than the ther-
mal velocity will ensure incompressibility of the perturbations. For supersonic modes, the parallel component will be
negligible. The additional inertia associated with the parallel motion of subsonic modes will lower the frequency squared
of subsonic modes by the Pfirsch–Schlüter factor. In the presence of significant toroidal flow however, the last two terms
in Eq. (68) contain the parallel displacement, complicating things somewhat more.

The second term on the right-hand side of Eq. (68) should be compared with Eq. (49) resulting from a combination of the
magneto-rotational instability and the convective effect of incompressible radial perturbations nw. This combination was
previously found in both astrophysical [55,62] and tokamak plasmas [63,64].

Note that the last term of Eq. (68) can be written as (c/cf � 1)qM2X2jnRj2. Comparing this with Eq. (51) we have clearly
identified this term as originating from the convective effect.

5.6. Continuous spectrum

For certain frequencies, common to a magnetic surface, the ideal MHD equations become singular. The associated eigen-
functions show singular behavior at the corresponding magnetic surface. These singular eigenmodes can be thought of as
being confined to their respective magnetic surface. Their amplitude will be non-zero over some surrounding region though.
Because of the discontinuous behavior of the eigenfunctions, the boundary conditions can always be satisfied so that each of
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these frequencies will be an eigenfrequency. The continuum of magnetic surfaces in this way traces out a continuum of fre-
quencies, called the continuous spectrum [61].

The continuum modes in the presence of a one-dimensional inhomogeneity, as in a cylinder, closely resemble those
waves in a homogeneous medium that have their wavevector perpendicular to the equilibrium magnetic field. As a primer
to the continuous spectrum of a torus, we will shortly investigate these cases subsequently.

5.6.1. Infinitely extended homogeneous plasma at rest
MHD waves can most easily be described in an infinitely extended fluid at rest, with constant equilibrium variables u = 0,

B, p, q [61]. The ideal MHD Eqs. (2a)–(2e) are in this case trivially satisfied, since all gradients vanish. Assuming plane wave
solutions for a perturbation n with a spatial and time dependence proportional to exp(ik � r � ixt), we can replace r with ik
and @/@t with �ix. The equation of motion Eq. (54) for a homogeneous background medium becomes
�qx2n ¼ ðik� dBÞ � B� ikdp: ð69Þ
Inserting dB = ik � (n � B) and dp = �icpk � n from Eqs. (53a) and (53c), and defining v s �
ffiffiffiffiffiffiffiffiffiffiffi
cp=q

p
and vA � B=

ffiffiffiffiqp , we obtain
�x2nþ ðk� ðk� ðn� vAÞÞÞ � vA þ v2
s kðk � nÞ ¼ 0: ð70Þ
Defining kk � k � v̂A, the component of Eq. (70) parallel to v̂A gives x2n � v̂A ¼ kkv2
s k � n. Using this relation to eliminate n � v̂A

and working out the triple cross-product, Eq. (70) can be written as
x2 � k2
kv2

A

� �
nþ ðk � nÞ v2

Av2
s

kk
x

� �2

� v2
s þ v2

A


 � !
kþ kkv2

Av̂A

" #
¼ 0: ð71Þ
The component of Eq. (71) perpendicular to both v̂A and k gives the Alfvén wave frequencies x2
A ¼ k2

kv2
A. The component of

Eq. (71) parallel to k gives the slow (�) and fast (+) magnetosonic wave frequencies
x2
s;f ¼ k2 v2

s þ v2
A

2



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

s þ v2
A

2

� �2

� v2
s v2

A

kk
k

� �2
s0@ 1A: ð72Þ
These wave frequencies satisfy x2
f P x2

A P x2
s P 0, reflecting the strengths of the restoring forces of these waves. For fast

and slow magnetosonic waves, both the plasma pressure and the magnetic pressure are disturbed; in phase and out of phase,
respectively. For Alfvén waves, these pressures are not perturbed and the magnetic field line tension acts as a restoring force.

When kk � k, Eq. (72) can be expanded to give
x2
s 	 k2

k
v2

s v2
A

v2
s þ v2

A

¼ x2
A

v2
s

v2
s þ v2

A

¼ x2
A

cp

cpþ B2 and x2
f 	 k2 v2

s þ v2
A


 �
: ð73Þ
We find that the frequencies of both the Alfvén and slow magnetonic waves vanish when kk ¼ 0. Because the frequency of
the fast wave always remains finite and relatively high, it is of little interest for stability and we will not consider this wave in
what follows.
5.6.2. A cylinder
When inhomogeneities are introduced, and bk1, the continuum waves that arise satisfy kk � k. The expressions of Eq. (73)

can therefore be immediately used to describe the continuum of a cylindrical plasma. In a cylinder, all quantities only de-
pend on the radial coordinate r so that single poloidal harmonics f / expi (mh �xt � k z) can be investigated separately.
The Alfvén continuum frequencies are then given by
xA;mðrÞ ¼ 
kkvA ¼ 

B � kffiffiffiffiqp ¼ 
B � r

i
ffiffiffiffiqp eiðmh�xt�kzÞ ¼ 
 kBz �mBh=rffiffiffiffiqp ¼ 
 �xA n� m

qðrÞ

� �
: ð74Þ
In the last expression we introduced qðrÞ ¼ rBz=R0Bh; �xAðrÞ ¼ Bz=
ffiffiffiffiqp R0 and n = k R0 to establish the correspondence between

a periodic cylinder with length 2pR0 and a large aspect ratio torus with cylindrical cross-section. In this case n becomes the
integer toroidal mode number introduced in Eq. (52) and Bz is replaced by B/. The cylindrical slow continuum frequencies are
given by xs;mðrÞ ¼ 
 �xsðn� m

qðrÞÞ with from Eq. (73)
�xsðrÞ ¼ �xA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cp

cpþ B2

s
	 �xA

ffiffiffiffiffiffiffiffiffi
1
2
cb

r
¼

ffiffiffiffiffiffi
cT

p
R0

: ð75Þ
The approximation of Eq. (75) holds for b � 2p/B2� 1 and BhkBz. Both of the continuum frequencies vanish at the rational
surface where q = m/n, indicating marginal stability in the absence of magnetic field line bending. It turns out that the only
effect of poloidal flow uh and longitudinal flow uz on the cylindrical continuum frequencies is a Doppler shift to
xD �x + muh/r + kuz.



994 J.W. Haverkort et al. / Journal of Computational Physics 231 (2012) 981–1001
5.6.3. A torus
In a torus, the poloidal angle is no longer an angle of symmetry. Whenever n �m/q = ±(n �m0/q) so that xA;m ¼ xA;m0 and

xs;m ¼ xs;m0 , toroidal coupling between poloidal harmonics ensures that these cylindrical frequency crossings are avoided
and a spectral gap appears. The gaps due to jm �m0j = 1,2,3, . . . are associated with poloidal variation of the equilibrium
due to toroidicity, ellipticity, triangularity, etc.

In a torus there is also a coupling when xA;m ¼ xs;m0 , which for b� 1 occurs approximately at the rational surface q = m/n
at a frequency
1 The
attribut
addition

2 The
q and S
v � rS =
x 	 ðm�m0Þ �xs=q: ð76Þ
The continuous spectrum is substantially modified by all this coupling. As in a cylinder, rotation shifts the eigenfrequencies
x to a Doppler shifted frequency xD �x + nX. Because in a torus the centrifugal force is no longer perpendicular to the mag-
netic surfaces, rotation introduces also more substantial changes to the continuous spectrum.

For a tokamak with isothermal magnetic surfaces, a small inverse aspect ratio �� 1, a Mach number of order unity, and
low b of order �2, an expression for the low-frequency continuous Alfvén spectrum close to a rational surface was obtained
analytically in Refs. [44,47]. Using the same assumptions, in Refs. [45,46] the eigenfrequencies of axisymmetric m = n = 0
modes were derived. According to Ref. [65], at the rational surface these frequencies are equal. 1 Repeating the procedure
of Refs. [45,46] for arbitrary cf = f/(f � 1), we derived 2 the eigenfrequencies xD ¼ 0;xD ¼ �x2

s =q2, and x2
D ¼ x2


, where
x2

 ¼ �x2

s a1 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1 � a2

q� �
; ð77aÞ
and,
a1 ¼ 1þ 1
2q2 þ 2M2 þ c

cf

M4

4
; ð77bÞ

a2 ¼
c
cf

� 1

 !
M4

2q2 ; ð77cÞ
where M ¼ R0X=
ffiffiffiffiffiffi
cT

p
and �xs ¼

ffiffiffiffiffiffi
cT

p
=R0. In the limit f ?1 (cf ? 1) for isothermal magnetic surfaces, this result agrees with

that of Refs. [44,65,47] for the low-frequency Alfvén continuum. In the limit f ? 1 (cf ?1) for magnetic surfaces of constant
density the recent result of Refs. [48] for axisymmetric modes is recovered. The present result generalizes these particular
results to arbitrary cf.

For small flow velocities M2� 1, we obtain from Eq. (77a)
x2
� 	

c
cf

� 1

 !
M2X2

2ð1þ 2q2Þ ; ð78Þ
which is equal to the BV-frequency x2
BV; tokamak of Eq. (51). This clearly shows that the flow-induced continuum gap for c > cf

between xD = �x� and x� can be attributed to the convective effect, as was suggested in Refs. [66,44].
In the absence of flow, the frequencies of Eq. (77a) are given by x2

� ¼ 0 and x2
þ ¼ ð1þ 2q2Þ �xs=2q2. The so-called beta-in-

duced continuum gap between xD = �x+ and x+ was first found in Refs. [67,68]. Note the similarity with the slow-Alfvén
coupling frequency Eq. (76), the difference being half the Pfirsch–Schlüter factor 1 + 2q2. This toroidal effect influences
the continuum modes through the curvature of the magnetic field within the magnetic surfaces, called the geodesic curva-
ture. These x+-continuum modes are therefore often referred to as Geodesic Acoustic Modes (GAMs) [69].

We note that for M = 0 the zero-frequency continuum modes x� = 0 can be thought of as equilibrium flows described by
Eq. (16). These flows are the linear counterpart of zonal flows. We finally note that, away from the resonant surface, the coef-
ficients a1 and a2 acquire additional terms (m/q � n)2/cb and 2(m/q � n)2/cbq2, respectively, to account for the effect of mag-
netic field line bending [44].
6. Numerical calculations

In this section we numerically analyse the waves and instabilities arising in the analytical equilibria of Eq. (21). The dis-
crete spectrum of global modes and instabilities arising in these equilibria have been discussed in Refs. [70] and [64], respec-
tively. Here, we will focus on the low-frequency continuous MHD spectrum. In particular we will look at the continuum
result of Refs. [45,46] for axisymmetric modes however differs from that of Refs. [44,47] for general mode number continuum modes. This can be
ed to an erroneous factor of �2 in the exponential dependence of the density of Ref. [45], of which only the minus sign was corrected in Ref. [46]. In
, a factor 2 is missing in the second term in Eq. (15) of Ref. [46].
difference in the derivation of Eq. (77a) compared to the result of Refs. [45,46] for cf ? 1 and [48] for cf ?1, pertains to evaluation of the advection of
by the perturbed velocity v lying within the magnetic surfaces. Using the general parametrization of Eqs. (10) and (11), for general cf one finds

(cf � c)(S/q)v � rq and v � rq = vRqRX2/cfT.
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frequencies x2
D ¼ x2

� given by Eq. (77a). We consider the cases f = c/(c � 1), f ?1, and f ? 1 corresponding to isentropic
(S(w)), isothermal (T(w)), and isochoric (q(w)) magnetic surfaces.

6.1. Solvers

To obtain a numerical representation of the analytical equilibria in the coordinates required for the stability analysis, the
equilibrium code FINESSE [39] is used. This FINite Element Solver for Stationary Equilibria, can calculate equilibria with gen-
eral equilibrium flows in several geometries. In case of purely toroidal flow, one can choose a constant cf so that the quantity
AðwÞ ¼ pq�cf from Eq. (14) is a flux function. The limits cf ?1 and cf ? 1, for isochoric and isothermal flux surfaces respec-
tively, are included as special cases [40]. Other dedicated equilibrium codes that include both toroidal and poloidal flow are
CLIO [26] and FLOW [71]. FINESSE uses a Galerkin approach with isoparametric bicubic Hermite basis functions for quartic
convergence behavior.

The linear stability code PHOENIX [72] is used to numerically investigate the continuous spectra. This mixed spectral and
finite element code was developed from the CASTOR code [28] by including the ability to treat arbitrary equilibrium flow.
The linearised MHD equations result in a generalized eigenvalue problem that is efficiently solved in PHOENIX using the iter-
ative Jacobi–Davidson algorithm [73]. The singular continuum eigenfunctions, obviously, cannot be resolved by the contin-
uous finite element basis functions. The associated eigenfrequencies however can be accurately found by replacing the basis
functions by well-ordered constants [74].

6.2. Equilibria

The equilibria considered in this section are those of Eq. (21). The coefficients c1 and c2 are adjusted using Eqs. (27) and
(29) to give an inverse aspect ratio � = 0.1 and ellipticity E = 1. The constant K = X2/2Ts from Eq. (19) is adjusted to yield a
desired central Mach number M0 �M(R = R0). The ratio P/J is used to give a b-profile ranging from zero at the plasma edge to
a maximum of approximately 0.005. The constant J is obtained as an eigenvalue by the solver so that a normalized flux func-
tion w between zero at the magnetic axis and one at the edge is obtained [39]. The overall magnitude of w was used to re-
scale the safety factor q. The resulting relatively flat q-profile was centred around q = 2 positioned at s 	 0.68, where
Fig. 2.
the num
s �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w� wm

we � wm

s
ð79Þ
with we and wm the values of w at the edge and the magnetic axis, respectively. A ratio of specific heats c = 5/3 was used in all
the calculations. The parametric dependence of X, Ts, and qs is restrained by the ideal gas law ps = qsTs and the assumption
that K is constant. First, the remaining freedom is used to investigate the effect of rigid rotation, for which Ts is constant. In
Section 6.4.3, X2, Ts, and ps are assumed to be of the same form so that qs is constant.

6.3. Convergence

For equilibria including toroidal flow, the analytical solutions of Eq. (21) are ideally suited to test the accuracy and con-
vergence behavior of a numerical solver. In this section we show the results of such a test for the equilibrium code FINESSE
[39]. The equilibria described in the previous section were used with isochoric flux surfaces f = 1, so that the analytical
expression Eq. (39) for the location of the magnetic axis could be used. This allowed the analytical solution to be compared
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with the numerical solution, which is scaled between zero on the magnetic axis and one at the plasma edge. A central Mach
number M0 = 1 was used.

In Fig. 2 the difference between the analytical and the numerical solution is shown in both the L2 and the L1 norm, i.e. the
root mean square of the difference and the maximum difference. Both measures of the error go down with the number N of
radial and poloidal elements approximately as 1/N4, demonstrating fourth order convergence up to a very small error of less
than 10�10.

6.4. Continuous spectra

In this section, we will investigate the solutions of Eq. (21) for f = 1, f ?1, and f = c/(c � 1), resulting in magnetic sur-
faces with constant density, temperature, and entropy, respectively.

6.4.1. Isentropic magnetic surfaces
Fig. 3 shows part of the continuous spectrum for the case that the entropy is constant on the magnetic surfaces. As dis-

cussed in Section 2.3.1, this may be appropriate in the presence of significant poloidal flow. The frequencies are Doppler
shifted and nondimensionalized with �xAm, which is �xA evaluated at the magnetic axis. The continuum frequencies are dis-
played as a function of the radial coordinate s of Eq. (79), which vanishes at the magnetic axis and assumes the value s = 1 at
the plasma edge.

Two different continuum branches are shown, corresponding to the cylindrical continua of Section 5.6.2. The lowest fre-
quency branch corresponds to slow magnetosonic waves, while the higher frequency branch corresponds to Alfvén waves.
As elaborated in Section 5.6.3, compressibility and toroidicity allow Alfvén waves to couple with the slow magnetosonic
waves so that the continua acquire a mixed slow-Alfvén polarization. Some cylindrical characteristics however remain, such
as the diverging frequency of the Alfvén-like branch towards the plasma edge where the density vanishes.
0 1s
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ω
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ω
Am

0.1

-0.1

0

Fig. 3. The Doppler shifted frequency xD, normalized by xAm � �xAðwmÞ, as a function of the radial coordinate s. The frequencies of the shown n = 1-
continuum branches vanish at the rational surface at s 	 0.68. The analytical equilibrium solution with isentropic flux surfaces (f = c/(c � 1)) is used for
M0 = 1.

0 1s

0.1

-0.1

0Re(      )
ω

D

ω
Am

Fig. 4. The low-frequency n = 1 continuous spectrum of the analytical equilibrium with isothermal flux surfaces (f ?1) for M0 = 1, showing the appearance
of a flow-induced continuum gap due to the convective effect.
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A toroidal mode number n = 1 was used so that in a cylinder, according to Section 5.6.2, the frequency of modes with a
poloidal mode number m = 2 vanish at the rational surface q = m/n = 2. Close to the rational surface, the Alfvén-like frequency
branch is described by xD = ±x� from Eq. (77a). In a toroidal plasma with isentropic flux surfaces c = cf so that a2 of Eq. (77c)
vanishes. According to Eq. (77a), x� vanishes in this case at the rational surface as well. As explained in Section 4.2.2, this is
due to the fact that without entropy gradients the convective effect is absent.

6.4.2. Isothermal magnetic surfaces
Fig. 4 shows the same part of the spectrum as Fig. 3, but now the limit f ?1 is taken in the equilibrium solution (21) so

that the magnetic surfaces become isothermal. The lowest frequency branch is only slightly affected, while the higher fre-
quency branch is lifted upwards. These continuum frequencies are described quite accurately by xD = ±x� from Eq. (77a).
Fig. 5. The half-width of the flow-induced continuum gap of the analytical equilibrium with isothermal magnetic surfaces (f ?1) as a function of the
Mach number M0. The numerical values (boxes) are compared with the analytical expression for x� from Eq. (77a) (solid line) and its approximation Eq.
(78) for low M0 (dashed line) for q = 2. Here MA ¼ X= �xAm is the Alfvén Mach number.
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Fig. 6. The real (a) and imaginary (b) part of the low-frequency n = 1 continuous spectrum of the analytical equilibrium with isochoric flux surfaces (f = 1)
for M0 = 1. Two of the four continuum branches that are stable near the plasma edge at s = 1 form a complex conjugate pair of unstable eigenmodes by
entering the complex plane. Their common real frequency deviates slightly from the Doppler shift due to the Coriolis effect.
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Rotation lifts these continuum frequencies to a finite buoyancy frequency or BV frequency due to the negative entropy gra-
dients in the direction of the centrifugal force within the isothermal magnetic surfaces [44].

Fig. 5 shows the half-width of the flow-induced continuum gap obtained from the numerical computations, as a function
of the Mach number M0 �M(R0). These numerical results are compared with the analytical result for x� of Eq. (77a) and the
approximation of Eq. (78), for low Mach numbers. Surprisingly good correspondence with x� is found up to sonic Mach
numbers, even though the aspect ratio � = 0.1 only just satisfies the assumption �� 1 used in the derivation of this analytical
result. For higher Mach numbers, the flux surfaces start to acquire significant triangularity and the computational results
start to deviate slightly from the analytical expression. Due to the excellent correspondence, a comparison such as performed
here provides a good standardized test for stability codes including toroidal rotation.
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Fig. 7. The real (a) and imaginary (b) part of the n = 1 low-frequency spectrum of the analytical equilibrium with constant density. For M0 = 0.1 only a small
part of the tokamak is unstable (note the abscissa).
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Fig. 8. The growth rate of the unstable continuous spectrum of the constant density analytical equilibrium as a function of the Mach number M0. The
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Fig. 9. The radial extent over which the constant density analytical equilibrium is unstable, as a function of the Mach number M0. For low M0, only a small
region near the rational surface is unstable, to spread to almost the entire tokamak for M0 = 1.
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6.4.3. Isochoric magnetic surfaces
Fig. 6(a) shows again the same part of the spectrum as Figs. 3 and 4, but now for the equilibrium of Eq. (21) with f = 1 so

that the magnetic surfaces have constant density. The low-frequency slow-like branch seems similar to that of Figs. 3 and 4.
Past the rational surface however, the frequency of this continuum diverges as is expected of Alfvén-like waves. The branch
that previously was Alfvén-like, now has actually become lower in frequency than the continuum branch that was slow-like.
Apart from a very small region near the plasma edge, these continua even leave the real axis of the complex frequency plane
by acquiring an imaginary component.

The imaginary component of the frequency is shown in Fig. 6(b). As implied by Eq. (60), the unstable continuum modes
turn up as a complex conjugate pair. By Eq. (52), the continuum mode with a positive imaginary part of the frequency is
unstable, while the mode with a negative imaginary part is damped. Because these modes also have a real frequency, these
modes oscillate while their amplitude increases (over-stable) or decreases. Note from Fig. 6(a) that the real part of the Dopp-
ler shifted frequency of this complex conjugate pair of modes only slightly deviates from zero, corresponding to the small
Coriolis shift V of Eq. (60). Note from Fig. 6 that the highest growth rate of the continuum modes is close to the rational sur-
face at s 	 0.68, where the magnetic field line bending vanishes. The growth rate decreases towards the plasma edge, primar-
ily due to the effect of the decreasing density on the remaining Alfvén-like character of the modes.

Finally, we investigate the maximum growth rate of the continuous spectrum as a function of the Mach number M0. We
do this for a tokamak with a constant static density qs over the entire plasma. In order to satisfy the assumptions of Eq. (19),
this implies that the angular frequency squared goes down towards the plasma edge like the static pressure ps. Fig. 7(a)
shows for M0 = 0.1 the continuum frequencies in a very small region around the rational surface q = 2. Because the angular
frequency varies over the tokamak, the Doppler shift is no longer constant and the actual frequency x is shown. The Alfvén-
like continuum again becomes unstable over some part of the plasma, resulting in the imaginary part of the frequency shown
in Fig. 7(b). When the Mach number is increased, both the maximum growth rate and the radial extent over which the con-
tinuous spectrum is unstable increases. This is shown in Figs. 8 and 9, respectively. From Fig. 9, the region over which the
tokamak becomes unstable spreads with increasing M0 from a tiny region close to the rational surface, to almost the entire
tokamak for M0 = 1.

In Fig. 8 the growth rate at the rational surface obtained numerically is compared to Im(x�) of Eq. (77a) and the approx-
imation of Eq. (78). Note that for constant K, in the large aspect ratio limit the Mach number M of Eq. (77a), evaluated at the
rational surface, is equal to M0. Also shown is the maximum growth rate of the continuum, which occurs closer to the mag-
netic axis, where the angular frequency is higher. Excellent agreement is obtained between the numerically obtained growth
rate at the rational surface and the analytical result, showing the value of such a comparison for the validation of numerical
stability codes.
7. Conclusion

The axisymmetric stationary ideal MHD equations are reduced to an extended Grad–Shafranov equation Eq. (18) that al-
lows one to specify which thermodynamic quantity is constant on the magnetic surfaces. Analytical equilibrium solutions
(21) have been derived that still contain this freedom. An arbitrary number of vacuum solutions may be added, allowing con-
trol over characteristics like the aspect ratio, ellipticity, and triangularity of the equilibrium. Expressions for the Mach num-
ber, average beta, and safety factor are derived, revealing some restrictions on attainable values.

The analytical solutions have been used to show the fourth order convergence of a numerical code, showing their useful-
ness for testing numerical equilibrium codes including toroidal rotation.
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The frequencies of the continuous Alfvén spectrum close to a rational surface have been derived including the effects of
toroidicity, compressibility, and rotation. These expressions (77a) still possess the freedom to specify which thermodynamic
quantity of the underlying equilibrium is constant on the magnetic surfaces.

The lowest Alfvén continuum frequency of a slowly rotating tokamak is shown to be equal to a heuristically derived
expression, Eq. (51), for the Brunt–Väisälä-frequency due to the centrifugal convective effect on plasma confined to the mag-
netic surfaces.

Depending on which quantity is constant on the magnetic surfaces, the convective effect either lifts the continuum fre-
quencies to a finite value or destabilizes the continuum. The analytical expressions for the flow-induced gap and the growth
rate of the unstable continuum show excellent agreement with the numerical results, showing their merits for the validation
of stability codes including toroidal rotation.

The present analytical spectral and equilibrium results generalize various previous results in which initial assumptions
were made on which thermodynamic quantity is constant on magnetic surfaces. This work shows that in many cases no such
assumption needs to be made at forehand. It is therefore recommended that, when considering purely toroidal rotation, the
general parametrizations of Eqs. (10) and (11) for the pressure and the density are used to make subsequent analysis as gen-
eral as possible. The same holds for numerical codes including purely toroidal rotation, where typically the specific choice of
isothermal magnetic surfaces is made, unnecessarily restricting the generality offered by the MHD equations.
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